A Finite Element Variational Multiscale Method for the Navier-Stokes Equations
نویسندگان
چکیده
This paper presents a variational multiscale method (VMS) for the incompressible Navier–Stokes equations which is defined by a large scale space LH for the velocity deformation tensor and a turbulent viscosity νT . The connection of this method to the standard formulation of a VMS is explained. The conditions on LH under which the VMS can be implemented easily and efficiently into an existing finite element code for solving the Navier–Stokes equations are studied. Numerical tests with the Smagorinsky large eddy simulation model for νT are presented.
منابع مشابه
Multi-level hp-FEM and the Finite Cell Method for the Navier-Stokes equations using a Variational Multiscale Formulation
متن کامل
Variational multiscale stabilized FEM formulations for transport equations: stochastic advection-diffusion and incompressible stochastic Navier-Stokes equations
An extension of the deterministic variational multiscale (VMS) approach with algebraic subgrid scale (SGS) modeling is considered for developing stabilized finite element formulations for the stochastic advection and the incompressible stochastic Navier-Stokes equations. The stabilized formulations are numerically implemented using the spectral stochastic formulation of the finite element metho...
متن کاملConsistent Newton-Raphson vs. fixed-point for variational multiscale formulations for incompressible Navier-Stokes
The following paper compares a consistent Newton-Raphson and fixed-point iteration based solution strategy for a variational multiscale finite element formulation for incompress-ible Navier–Stokes. The main contributions of this work include a consistent linearization of the Navier–Stokes equations, which provides an avenue for advanced algorithms that require origins in a consistent method. We...
متن کاملFinite element error analysis of a variational multiscale method for the Navier-Stokes equations
متن کامل
Convergence towards weak solutions of the Navier-Stokes for a finite element approximation with numerical subgrid scale modeling
Residual-based stabilized finite element techniques for the NavierStokes equations lead to numerical discretizations that provide convection stabilization as well as pressure stability without the need to satisfy an inf-sup condition. They can be motivated by using a variational multiscale framework, based on the decomposition of the fluid velocity into a resolvable finite element component plu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 26 شماره
صفحات -
تاریخ انتشار 2005